CMG-1T CALIBRATION SHEET

WORKS ORDER: 4718 DATE: 16-Oct-2009

SERIAL NUMBER: T1049 TESTED BY: S. Goddard

	Velocity Output V/m/s (Differential)	Mass Position Output (Acceleration output) V/m/s ²	Feedback Coil Constant Amp/m/s ²
VERTICAL	2 x 3153	1410	0.0047
NORTH/SOUTH	2 x 3169	1428	0.00476
EAST/WEST	2 x 3169	1443	0.00481

Power Consumption: 60mA @ +12V input

Calibration Resistor: 51000

POLES AND ZEROS TABLE

WORKS ORDER NUMBER: 4718

SENSOR SERIAL NO: T1049

Velocity response output, Vertical Sensor:

POLES (HZ)	ZEROS HZ	
$-1.964 \times 10^{-3} \pm j1.964 \times 10^{-3}$	0	
-30.0529±j31.1211	0	
-41.2564±j114.535		

Normalizing factor at 1 Hz: $A = 27.7 \times 10^6$

Sensor Sensitivity: See Calibration Sheet.

Velocity response output, Horizontal Sensors:

ZEROS (HZ)
0
0

Normalizing factor at 1 Hz: $A = 27.7 \times 10^6$

Sensor Sensitivity: See Calibration Sheet.

NOTE: The above poles and zeros apply to the vertical and the horizontal sensors and are given in units of Hz. To convert to Radian/sec multiply each pole or zero with 2π . The normalizing factor A should also be recalculated.